Multiplicity formulas for discrete series representations inL2(Γ\Sp(2,R))
نویسندگان
چکیده
منابع مشابه
Multiplicity Formulas for Orbifolds Multiplicity Formulas for Orbifolds
Given a symplectic space, equipped with a line bundle and a Hamiltonian group action satisfying certain compatibility conditions, it is a basic question to understand the decomposition of the quantization space in irreducible representations of the group. We derive weight multiplicity formulas for the quantization space in terms of data at the fixed points on the symplectic space, which apply t...
متن کاملStable Trace Formulas and Discrete Series Multiplicities
Let G be a reductive algebraic group over Q, and suppose that Γ ⊂ G(R) is an arithmetic subgroup defined by congruence conditions. A basic problem in arithmetic is to determine the multiplicities of discrete series representations in L2(Γ\G(R)), and in general to determine the traces of Hecke operators on these spaces. In this paper we give a conjectural formula for the traces of Hecke operator...
متن کاملFormulas for the Multiplicity of Graded Algebras
Let R be a standard graded Noetherian algebra over an Artinian local ring. Motivated by the work of Achilles and Manaresi in intersection theory, we first express the multiplicity of R by means of local j-multiplicities of various hyperplane sections. When applied to a homogeneous inclusion A ⊆ B of standard graded Noetherian algebras over an Artinian local ring, this formula yields the multipl...
متن کاملOn Strong Multiplicity One for Automorphic Representations
We extend the strong multiplicity one theorem of Jacquet, Piatetski-Shapiro and Shalika. Let π be a unitary, cuspidal, automorphic representation of GLn(AK). Let S be a set of finite places of K, such that the sum ∑ v∈S Nv −2/(n+1) is convergent. Then π is uniquely determined by the collection of the local components {πv | v 6∈ S, v finite} of π. Combining this theorem with base change, it is p...
متن کاملMultiplicity Formulas for Perverse Coherent Sheaves on the Nilpotent Cone
Arinkin and Bezrukavnikov have given the construction of the category of equivariant perverse coherent sheaves on the nilpotent cone of a complex reductive algebraic group. Bezrukavnikov has shown that this category is in fact weakly quasi-hereditary with Andersen–Jantzen sheaves playing a role analogous to that of Verma modules in category O for a semi-simple Lie algebra. Our goal is to show t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2013
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2013.04.013